Package: ssMousetrack (via r-universe)

August 27, 2024

Title Bayesian State-Space Modeling of Mouse-Tracking Experiments via
Stan

Version 1.1.6
Date 2023-04-05

Description Estimates previously compiled state-space modeling for
mouse-tracking experiments using the 'rstan' package, which
provides the R interface to the Stan C++ library for Bayesian
estimation.

License GPL (>=3)
Depends methods, R (>= 3.4.0), Rcpp (>=1.0.0)

Imports rstan (>= 2.18.2), rstantools (>= 1.5.1), CircStats, dtw,
ggplot2, cowplot, RcppParallel

LinkingTo BH (>= 1.66.0-1), Rcpp (>= 1.0.0), RcppEigen (>= 0.3.3.5.0),
rstan (>= 2.18.2), StanHeaders (>= 2.18.0), RcppParallel

Encoding UTF-8

LazyData true

NeedsCompilation yes

SystemRequirements GNU make
RoxygenNote 7.2.3

Author Antonio Calcagni, Massimiliano Pastore

Maintainer Antonio Calcagni <ant.calcagni@gmail.com>

BugReports https://github.com/antcalcagni/ssMousetrack/issues
Repository https://antcalcagni.r-universe.dev

RemoteUrl https://github.com/antcalcagni/ssmousetrack

RemoteRef HEAD

RemoteSha ¢€92300361888e803e7e¢562c69b88c9262f7117b

https://github.com/antcalcagni/ssMousetrack/issues

2 ssMousetrack-package

Contents
ssMousetrack-package e 2
check_prior L e 5
compute_D e 6
CONZIUENCY . « ¢ v v v v e 7
evaluate SSM e e 8
generate_data L e e 9
generate_design L. e e e e e e 10
GENETALE_Z i o e e e e e e e e e e e e e e e e e 11
language L e 12
prepare_data L L e e e 13
TUNLSSIM . v v v v v o e e e e e e e e e e e e e 14

Index 17

ssMousetrack-package Bayesian State-Space Modeling of Mouse-Tracking Experiments Via
Stan

Description

The ssMousetrack package allows analysing mouse-tracking experiments via Bayesian state-space
modeling. The package estimates the model using Markov Chain Monte Carlo, variational approx-
imations to the posterior distribution, or optimization, as implemented in the rstan package. The
user can use the customary R modeling syntax to define equations of the model and Stan syntax to
specify priors over the model parameters.

The sections below provide an overview of the state-space model implemented by the ssMouse-
track package.

Details

(i) Mouse-tracking data

The raw data of a mouse-tracking experiment for / individuals and J stimuli consist of a collection
of arrays (x,9)i; = (2o,..,ZN,;; Y0, -, Yn,,;) Which contain ordered N;; x 1 sequences of x-y
Cartesian coordinates as mapped to the computer-mouse pointer. The x-y coordinates are pre-
processed according to the following steps:

1. Realigning: the arrays (z,y);, are re-aligned on a common sampling scale, so that N indicates
the cumulative amount of progressive time from 0% to N = 100%, with N being the same over
t=1,..,landj=1,...,J

2. Normalization: the aligned arrays (z,y);; are normalized so that (zo,¥0);; = (0,0) and
(xn,yn)ij = (1,1) foreachi=1,....,Jand j =1,...,J

3. Translation: the normalized arrays (z,y);; are translated into the quadrant [—1, 1]x[0, 1]

4. atan2 projection: the final arrays (z,y);; are projected onto a lower-subspace via the atan2

function by getting the ordered collection of radians (y);; = (yo, ..., yn) in the subset of reals
(0,7, foreachi = 1,....,Tand j = 1,..., J.

ssMousetrack-package 3

The final I x J x N array of data Y contains the mouse-tracking trajectories expressed in terms
of angles. These trajectories lie on the arc defined by the union of two disjoint sets, namely the
sets {yo, ..., YN : Yn > m/2} (target’s hemispace) and {yo, ..., yn : yn < (37)/4} (distractor’s
hemispace), with /2 and (37)/4 being the location points for target and distractor, respectively.

Note that, the current version of ssMousetrack package requires the number of stimuli J to be the
same over the subjects i = 1, ..., I.

The pre-processed mouse-tracking trajectories are analysed using the state-space modeling de-
scribed below.

(ii) Model representation

The array Y contains the observed data expressed in angles. The measurement equation of the

model is:
yg.‘) ~ vonMises (ul(-;-l), /il(-?))
where ,LLE;—L) and fil(-;b) are the location and the concentration parameters for the vonMises probability

law. The moving mean on the arc u(-T-L)

ij is defined as:

niy! =GB,

with 8 being a J x 1 array of real parameters representing the contribution of the j-th stimulus on

the observed trajectory y;; = (v, ...,y™)) whereas G is a non-linear function mapping reals to

the subset (0, 7] of the form: (i) [(1 + exp(8 — xETL)))} 7! (logistic), (ii) [exp(—3 exp(fxETL)))] 7
(n)

(gompertz). In the G equation, z; ~ is a real random quantity obeying to the law:

xl(.n) ~ Normal(ajgn_l), o)

xl(_O) x(N))

which represents a random walk process with time-fixed variance o?. The terms z; = (x; ', ..., x;
are the individual latent dynamics unaffected by the stimuli (i.e., how individual differ in executing
the task) whereas /3 contains the experimental effects regardless to the individual dynamic (i.e., how

experimental variables act on the individual dynamics to produce the observed responses).

The terms 8 = (31, ..., 8) are defined according to the following linear combination:

K
Bi = zikvk
k=1

where zj;, is an element of the J x K dummy matrix Z representing main and high-order effects of
the experimental design.

© n(-]-v)) are computed as follows:

The terms fijj = (K;; 5 -y Ky

where 60" = [y — (37)/4] (f y) < 7/ or 6 = |y — w/4| Gf v > 7/2). The
function exp? is the exponential function scaled in the natural range of the parameters r;; (positive

real numbers).

(iii) Bayesian formulation

4 ssMousetrack-package

The state-space model in the ssMousetrack package requires estimating the array of latent trajec-
tories X and the K x 1 parameters ~y. Let © representing both the unknown quantities, the posterior
density after factorization is:

I J I J

fO) o f) TTTTFlwin) TTTT £ (@ilvis)

i=1j=1 i=1j=1

Sampling from f(©[Y') is solved via marginal MCMC where the term f(x;|y;;) is approximated by
means of Kalman filtering/smoothing. The marginal Likelihood of the model used for the rejection
criterion of the MCMC sampler is approximated with the Normal distribution using the Kalman
filter theory.

References

Calcagni, A., Coco, M., Pastore, M., & Duran N. (2019). State space modeling for incidental
memory in naturalistic scenes. Manuscript in preparation

Calcagni, A., Lombardi, L., & D’Alessandro, M. (2018). A state space approach to dynamic mod-
eling of mouse-tracking data. Under review

Calcagni, A., Lombardi, L., & D’Alessandro (2018, August). Probabilistic modeling of mouse-
tracking data: A statespace approach. Paper presented at the 2018 European Mathematical Psy-
chology Group Meeting (EMPG 2018), Genova, Italy

Calcagni, A., Lombardi, L., D’Alessandro, M., & Sulpizio S. (2018, March). A subject oriented
state-space approach to model mouse-tracking data. Paper presented at the 60th Conference of
Experimental Psychologists (TeaP 2018), Marburg, Germany

Freeman, J. B. (2018). Doing psychological science by hand. Current Directions in Psychological
Science, In press, 1-9

Sarkkd, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press

Durbin, J., & Koopman, S.J. (2012). Time series analysis by state space methods (Vol. 38). Oxford
University Press

Andrieu, C., Doucet, A., & Holenstein, R. (2010). Particle markov chain monte carlo methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3), 269s-342

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian Data Analysis (Second
edition). Chapman & Hall/CRC.

See Also

https://mc-stan.org/ for more information on the Stan C++ language used by ssMousetrack
package

Jokkala, J. (2016). Github repository: kalman-stan-randomwalk, https://github.com/juhokokkala/
kalman-stan-randomwalk

https://mc-stan.org/
https://github.com/juhokokkala/kalman-stan-randomwalk
https://github.com/juhokokkala/kalman-stan-randomwalk

check_prior 5

check_

prior Check prior distributions

Description

Check prior distributions

Usage

check_prior(priors = NULL)

Arguments
priors (list) a list of arguments specifying priors for each parameter involved in the
model (see Details). If priors=NULL then predefined priors will be returned.
Details

The function is used to specify the prior-related arguments of the state-space modeling function
run_ssm. Priors are specified in terms of distributions and associated parameters as implemented
in the rstan package. The available options are as follows:

lognormal (mu, sigma) (code = 1, required parameters = 2)
normal(mu,sigma) (code = 2, required parameters = 2)
normal(mu,sigma)T(min,max) (code = 201, required parameters = 4)
chi_square(df) (code = 3, required parameters = 1)
inv_chi_square(df) (code = 4, required parameters = 1)
gamma(alpha,beta) (code =5, required parameters = 2)
pareto(min,alpha) (code = 6, required parameters = 2)

uniform(min,max) (code =7, required parameters = 2)

This is an internal function, generally not to be called by the user.

Value

a matrix contatining priors (numeric codes, see Details) and their parameters

Examples

Not run:

Define priors for all the paramaters

priors_list <- list("lognormal(1,1)","normal(2,3)T(0,10)","normal(3,1)")
priors_out <- check_prior(priors_list)

print(priors_out)

Define priors for some of the paramaters
priors_list <- list(NULL,"pareto(1,1.2)",NULL)

6 compute_D
priors_out <- check_prior(priors_list)
print(priors_out)
Use pre-defined vague priors for all the parameters
priors_list <- 1list(NULL,NULL,NULL)
priors_out <- check_prior(priors_list)
print(priors_out)
End(Not run)
compute_D Compute the matrix of distances D for kappa parameters
Description
Compute the matrix of distances D for kappa parameters
Usage
compute_D(Y = NULL, y_T = pi/4, y_D = (3 * pi)/4)
Arguments
Y (matrix) N x JI matrix of observed trajectories
y_T (numeric) position in angles of the target
y_D (numeric) position in angles of the distractor
Details
The function compute the distance of the Y-trajectories from the distractor and target points. This
is an internal function, generally not to be called by the user.
Value
a N x JI matrix containing the delta values for each data pointin Y
Examples

Generate a generic matrix Y of I = 5 individuals and J = 1 trajectories (N = 61)

I<-5; N<-61

y_T <- pi/4; y_D <- (3xpi)/4

Y <- matrix(stats::rnorm(n = N*I mean = (y_T+y_D)/2,sd = 10),N,I)
DY <- compute_D(Y=Y,y_T=y_T,y_D=y_D)

congruency 7

congruency Mouse-tracking experiment of a memory task

Description

This dataset contains a subset of data originally presented in Coco & Duran (2016). In this task
participants see sentence and scene pairs that varied in plausibility and are requested to classify the
pairs as congruent or incongruent. The experimental variables are congruency with two categori-
cal levels (i.e., congruent, incongruent) and plausibility with two categorical levels (i.e., plausible,
implausible). Participants have to classify each stimulus as belonging to one of these four levels.

The dataset contains two participants (I=2), each measured along three trials, two categorical vari-
ables (Q=2) each with two levels (K=2). The total number of trials is J=12. Mouse-tracking trajec-
tories are raw-data, i.e. they have not been previously pre-processed.

Usage

congruency

Format

A long-format dataframe of 728 observations containing information on the following variables.

sbj The ID number of participants

trial The ID number of trials

congruency A factor of levels congruent, incongruent
plausibility A factor of levels plausible, implausible
timestep The ID number of the recorded x-y trajectories
x The recorded x-trajectories

y The recorded y-trajectories

Source

Coco, M. L., & Duran, N. D. (2016). When expectancies collide: Action dynamics reveal the
interaction between stimulus plausibility and congruency. Psychonomic bulletin & review, 23(6),
1920-1931.

8 evaluate_ssm

evaluate_ssm Evaluate the adequacy of the state-space model to reproduce the ob-
served data

Description

Evaluate the adequacy of the state-space model to reproduce the observed data

Usage
evaluate_ssm(ssmfit = NULL, M = 100, plotx = TRUE)

Arguments
ssmfit (list) output of run_ssm function
M (integer) number of replications
plotx (boolean) if plotx=TRUE the function returns a graphical representation for the
fit indices
Details

The function implements a simulated-based method for assessing the adequacy of the model to
reproduce the observed data. In particular, the function provides two type of model adequacy, i.e.
overall (PA_ov) and by-subject (PA_sbj). In the overall case the function provides the total amount
of data reconstruction based on the I x J x N matrix Y of observed data. By contrast, in the second
case the function provides the adequacy of the model to reconstruct the individual-based set of data
as it works on the matrix J x N over i=1,...,I. Both the indices are in the range 0% - 100%, with 100%
indicating perfect fit. In addition, the function returns a by-subject distance-based index (Dynamic
Timw Warp distance) between observed and reproduced trajectories using dtw function.

Value

a datalist containing the adequacy indices

Examples

Not run:

Fit a state-space model using simulated data

Generate mouse-tracking data for an univariate experimental design with K = 3 categorical levels,
J = 12 trials, I = 5 subjects

X1 <- generate_data(I=5,J=12,K=3,Z.formula="~21")

iid <- 23 # keep just one dataset from the simulated set of datasets

Run the state-space model on the chosen dataset

X1_fit <- run_ssm(N = X1$N,I = X1$I,J = X1$J,Y = X1$data$y[iid,,],D = X1$data$D[iid,,],
Z = X1$data$Z,niter=100, nwarmup=25)

Evaluate the state-space model

evaluate_ssm(ssmfit = X1_fit,M = 10,plotx=FALSE)

End(Not run)

generate_data

generate_data

Generate datasets according to the model structure

Description

Generate datasets according to the model structure

Usage
generate_data(
M =100,
N = 61,
I=1o0,
J =12,
K =c(4),
Z.type = c("symmetric"),
Z.contrast = "treatment”,
Z.formula = NULL,
sigmax = 1,
lambda = 1,
yT = pi/4,
yb = (3 * pi)/4,
kappa_bnds = c(120, 300),
priors = "default”,
gfunction = c("logistic”, "gompertz"),
)
Arguments
M (integer) number of simulated datasets
N (integer) length of the Y-trajectories
I (integer) number of individuals
J (integer) number of trials
K (array of integers) list of length Q of the number of levels for each categorical
variable
Z.type (array of characters) list of length Q of the methods (symmetric or random) to
generate the matrix (see generate_Z)
Z.contrast (character) type of contrasts (default: treatment) for the model matrix Z (see
model.matrix)
Z.formula (character) a formula of the contrasts for the model matrix Z (see model .matrix)
sigmax (numeric) fixed value for the model parameter sigmax
lambda (numeric) fixed value for the model parameter lambda
yT (numeric) position in angles of the target

10

yD
kappa_bnds

priors

gfunction

Details

generate_design

(numeric) position in angles of the distractor

(array) array containing the lower and upper bounds for the kappa parameter
(default =c(120,300))

(list) a list of arguments specifying priors for each parameter involved in the
model (see check_prior). If priors="default” then pre-defined priors will
be used.

(character) type of link function between latent states and observed data: ’logis-
tic’, ’gompertz’ (default = 'logistic').

other stan arguments (e.g., "init’, "algorithm’, ’sample_file’. See sampling)

The function generates simulated datasets via Stan according to the model structure.

Value

a datalist containing simulated data and parameters

Examples

Not run:

Generate mouse-tracking data for an univariate experimental design
with K = 3 categorical levels, J = 30 trials, I = 8 subjects
X1 <- generate_data(I=5,J=12,K=3,Z.formula="~21",M=50)

Generate mouse-tracking data for an univariate experimental design

by varying priors of parameters

priors_list = list("normal(@,1)T(0,Inf)","normal(@,1)","normal(-2,0.5)")
X1 <- generate_data(I=5,J=12,K=3,Z.formula="~21" ,M=50,priors=priors_list)

Generate mouse-tracking data with two experimental factors Z1 and Z2, J = 9 trials,
K_Z1 = 3, K_Z2 = 3, I = 5 subjects
X2 <- generate_data(I=5,J=9,K=c(3,3),Z.formula="~Z1%xZ2",

n on

Z.type=c("symmetric"”,"random”) ,M=50) # design with interaction

End(Not run)

generate_design

Generate the design of a mouse-tracking experiment

Description

Generate the design of a mouse-tracking experiment

Usage

generate_design(I = 10, J = 12, K = c(4), Z.type = c("symmetric"))

generate_Z

Arguments

I
J
K

Z.type

Details

11

(integer) number of individuals
(integer) number of trials

(list of integers) list of length Q of the number of levels for each categorical
variable

(list of characters) list of length Q of the methods (symmetric or random) to
generate the matrix (see generate_Z)

The function generates a dataframe containing the experimental design of a mouse-tracking study.
The design is of the order (sbj,trial,variablel,...variableQ), where variablel,...,variableQ are Q cat-
egorical variables each with K_1,...,K_Q levels. The levels are codified using hundreds. This is an
internal function, generally not to be called by the user.

Value

a dataframe of the order (sbj,trial,variablel,...variableQ)

Examples

Generate a design with Q = 2 categorical variables:

the first variable has K = 4 levels generated via symmetric method
the second variable has K = 3 levels generated via random method.
X <- generate_design(I = 10, J = 12, K = c(4,3), Z.type = c("symmetric"”,"random"))

print(X)
generate_Z Generate a row-wise stacked boolean partition matrix of JI rows and
K columns
Description

Generate a row-wise stacked boolean partition matrix of JI rows and K columns

Usage

generate_Z(I, J, K, type = c("symmetric”, "random"))

Arguments
I (integer) number of individuals
J (integer) number of trials
K (integer) number of levels for a categorical variables

type (character) method to generate the matrix: symmetric (default) or random

12 language

Details

The function generates a (JI x K) boolean partition matrix for I individuals, J stimuli and K cate-
gories. Note that J and K must be chosen so that J This is an internal function, generally not to be
called by the user.

Value

a (JI x K) boolean matrix

Examples
Z <- generate_Z(I = 2,J = 12,K = 4,type="symmetric")
print(2)
language Mouse-tracking experiment of a lexical decision task
Description

This dataset contains a subset of data originally presented in Barca & Pezzullo (2012). In this task
participants see a printed stimulus on the screen (e.g., water) and are requested to perform a di-
chotomous choice task where the stimulus can be classified as word or non-word. The experimental
variable is the stimulus type with four categorical levels (i.e., high-frequency word, low-frequency
word, pseudowords, and strings of letters). Participants have to classify each stimulus as belonging
to word or non-word categories.

The dataset contains five participants (I=5), each measured along three trials, one categorical vari-
able (Q=1) with four levels (K=4). The total number of trials is J=12. Mouse-tracking trajectories
have previously been pre-processed with N=101 timesteps, translated into the first quadrant, and
rotated so that the Target point (y_T) is always on the right-side.

Usage

language

Format
A long-format dataframe of 6060 observations containing information on the following variables.

sbj The ID number of participants

condition A factor of levels HF, LF, PW, NW indicating the type of stimulus
timestep The ID number of the recorded x-y trajectories

x The recorded x-trajectories

y The recorded y-trajectories

trial The ID number of trials

prepare_data

Source

13

Barca, L., & Pezzulo, G. (2012). Unfolding visual lexical decision in time. PloS one, 7(4), €35932.

prepare_data

Prepare mouse-tracking trajectories for state-space modeling via Stan

Description

Prepare mouse-tracking trajectories for state-space modeling via Stan

Usage
prepare_data(
X = NULL,
preprocess = TRUE,
N = 61,
Z.formula = NULL,
Z.contrast = "treatment”,
yT = "AUTO",
yD = "AUTO"
)
Arguments
X (dataframe) a data frame of x-y trajectories and experimental design (see Details)
preprocess (boolean) indicates whether x-y trajectories should be pre-processed (default
preprocess=TRUE)
N (integer) number of timesteps for trajectory normalization (default N=61)
Z.formula (character) a formula of the contrasts for the model matrix Z (see model.matrix)
Z.contrast (character) type of contrasts (default: treatment) for the model matrix Z (see
model.matrix)
yT (numeric) position in angles of the target. The default option yT="AUTO" will
automatically determine the target position from the observed data
yD (numeric) position in angles of the distractor. The default option yD="AUTO"
will automatically determine the target position from the observed data
Details

The function prepares the mouse-tracking trajectories to be modeled for the state-space analysis. It
automatically processes trajectories according to time-normalization, translation, and atan2 conver-
sion. Users can skip pre-processing by setting preprocess=FALSE.

The input dataframe X needs to be organized using the long format with information being organized
as nested. In particular, X must contains the following variables:

sbj The ID number of participants

14 run_ssm

trial The ID number of trials

factors 1,...,Q factors for the categorical variables of the design. They may have different levels.
timestep The ID number of the recorded x-y trajectories

x The recorded x-trajectories associated to trials and experimental levels

y The recorded y-trajectories associated to trials and experimental levels

See language and congruency as examples of datasets format required by ssMousetrack package.

Value

a list containing (i) the new dataframe of the pre-processed dataset (X_processed) and (ii) the
needed data for run_ssm

Examples

data(congruency)
dataout <- prepare_data(X = congruency,preprocess = TRUE,Z.formula = "~congruency*plausibility")
str(dataout)

run_ssm State-space modeling of mouse-tracking trajectories via Stan

Description

State-space modeling of mouse-tracking trajectories via Stan

Usage

run_ssm(

NULL,

NULL,

NULL,

sigmax = 1,

lambda = 1,

y_T = pi/4,

y_D = (3 x pi)/4,
priors = "default”,
gfunction = c("logistic”", "gompertz"),
kappa_bnds = c(5, 300),
nchains = 1,

niter = 2000,

nwarmup = 500,

ncores = "AUTO",

O < 4 H
non

N
1

run_ssm

stan_object

Arguments

N
I
J
Y
D
z

sigmax
lambda
y_T
y_D

priors
gfunction

kappa_bnds

nchains
niter
nwarmup

ncores

stan_object

Details

15

= FALSE,

(integer) length of the Y-trajectories

(integer) number of individuals

(integer) number of trials

(matrix) N x JI matrix of observed trajectories

(matrix) N x JI matrix of delta values for the observed trajectories

(matrix) matrix of contrasts associated to the experimental design (see generate_design)

(numeric) fixed value for the model parameter sigmax
(numeric) fixed value for the model parameter lambda
(numeric) position in angles of the target

(numeric) position in angles of the distractor

(list) a list of arguments specifying priors for each parameter involved in the
model (see check_prior). If priors="default” then pre-defined tpriors will
be used.

(character) type of link function between latent states and observed data: ’logis-
tic’, ’gompertz’ (default = 'logistic’).

(array) array containing the lower and upper bounds for the kappa parameter
(default = c(5,300))

(integer) number of chains for the MCMC algorithm
(integer) number of iterations for each chain
(integer) number of warmup/burnin iterations per chain

(integer) number of cores to use when executing the chains in parallel. The de-
fault option ncores="AUTO" will automatically determine the number of cores
via the parallel package

(boolean) if stan_object=TRUE, the object of S4 class stanfit representing the
fitted results will be saved as stan_object.rda

other stan arguments (e.g., ’init’, "algorithm’, ’sample_file’. See sampling)

The function drawns samples from the posterior distribution of the model parameters. Note that,
the current version of ssMousetrack package requires the number of stimuli J to be the same over
the subjects ¢ =1, ..., 1.

Value

a datalist containing the posterior samples for the model parameters along with the main Stan output

16 run_ssm

Examples

Not run:

Fit a state-space model using simulated data

Generate mouse-tracking data for an univariate experimental design with K = 3 categorical levels,
J =12 trials, I = 5 subjects

X1 <- generate_data(I=5,J=12,K=3,Z.formula="~Z1")

iid <- 23 # keep just one dataset from the simulated set of datasets

Run the state-space model on the chosen dataset

X1_fit <- run_ssm(N = X1$N,I = X1$I,J = X1$J,Y = X1$data$Y[iid,,]1,D = X1$data$D[iid,,],

Z = X1$data$z)

Fit a state-space model using the experimental dataset language

The dataset is ready to be used and it does not need to be pre-processed (preprocess=FALSE).
In this case, the function prepare_data just computes the observed radians from

the x-y trajectories

X2 <- prepare_data(X = language, preprocess = FALSE, Z.formula = "~condition")

Run the state-space model on the chosen dataset

X2_fit <- run_ssm(N = X2$N,I = X2$I,J = X2$J,Y = X28$Y,D = X2$D,Z = X2%Z,
niter=5000,nchains=2)

Fit a state-space model using the experimental dataset congruency

The dataset needs to be pre-processed (preprocess=TRUE)

X3 <- prepare_data(X = congruency, preprocess = TRUE,

Z.formula = "~congruency+plausibility”) # additive design

Define priors of the model parameters

KK <- dim(X3$Z)[2] # number of model parameters implied by the design matrix Z
priors_list <- list("lognormal(1,0.5)","pareto(3,5.25)","normal(@,2.5)")
note that length(priors_list) = KK

Run the state-space model on the chosen dataset

X3_fit <- run_ssm(N = X3$N,I = X3$I,J = X3$J,Y = X3$Y,D = X3$D,Z = X3%Z,
niter=10000,nwarmup=3500,priors=priors_list,nchains=4)

End(Not run)

Index

+ datasets
congruency, 7
language, 12

check_prior, 5, 10, 15
compute_D, 6
congruency, 7, 14

dtw, 8
evaluate_ssm, 8

generate_data, 9
generate_design, 10, 15
generate_Z7,9,11, 11

language, 12, 14
model.matrix, 9, 13
prepare_data, 13
run_ssm, 5, 8, 14, 14
sampling, 10, 15

ssMousetrack (ssMousetrack-package), 2
ssMousetrack-package, 2

17

	ssMousetrack-package
	check_prior
	compute_D
	congruency
	evaluate_ssm
	generate_data
	generate_design
	generate_Z
	language
	prepare_data
	run_ssm
	Index

